🏡 index : ~doyle/aoc.git

author Jordan Doyle <jordan@doyle.la> 2023-12-09 18:29:11.0 +00:00:00
committer Jordan Doyle <jordan@doyle.la> 2023-12-09 20:19:53.0 +00:00:00
commit
6e1811614adc1fdea520bd47d71dcc0b0997b107 [patch]
tree
db44fdf7caa1c527a06ad0c521e2fa64616cbe56
parent
fa9bd23e7a94ec60775c07ec20e830169a980e26
download
6e1811614adc1fdea520bd47d71dcc0b0997b107.tar.gz

Add day 9



Diff

 9.hs | 76 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 1 file changed, 76 insertions(+)

diff --git a/9.hs b/9.hs
new file mode 100755
index 0000000..5623c9e 100755
--- /dev/null
+++ a/9.hs
@@ -1,0 +1,76 @@
#!/usr/bin/env nix-shell
#!nix-shell --pure -i runghc -p "haskellPackages.ghcWithPackages (pkgs: with pkgs; [ ])"

import Control.Monad (guard)
import Data.List (unfoldr)
import Text.Parsec
import Text.Parsec.Char
import Text.Parsec.Combinator
import Text.Parsec.String (Parser)

main = do
  input <- readAndParseStdin
  print $ part1 input
  print $ part2 input

-- interpolate the next value on every input and sum them
part1 :: [[Int]] -> Int
part1 = sum . map (round . interpolateNext)

-- interpolate the previous value on every input and sum them
part2 :: [[Int]] -> Int
part2 = sum . map (round . interpolatePrevious)

-- helper function to call interpolatePolynomial for the next value
interpolateNext :: [Int] -> Double
interpolateNext i = interpolatePolynomial (length i) i

-- helper function to call interpolatePolynomial for the previous value
interpolatePrevious :: [Int] -> Double
interpolatePrevious = interpolatePolynomial (-1)

-- given an nth term and a sequence, calculate newton's polynomial and
-- interpolate the nth value for the sequence
interpolatePolynomial :: Int -> [Int] -> Double
interpolatePolynomial nth seq =

  let divDiff = (dividedDifference . buildDifferenceTable) seq
      initialValue = (1, 0)
      (_, val) = foldl foldFunction initialValue $ zip [0 ..] (tail divDiff)
   in head divDiff + val
  where
    foldFunction (productAcc, valueAcc) (idx, val) =

      let prod = productAcc * fromIntegral (nth - idx)
       in (prod, valueAcc + (val * prod))

-- calculate the divided differences from our table for newton's
-- polynomial
dividedDifference :: [[Int]] -> [Double]
dividedDifference table = [fromIntegral (head row) / fromIntegral (fac i) | (i, row) <- zip [0 ..] table]
  where
    fac i = product [1 .. i]

-- build the difference table of each input
buildDifferenceTable :: [Int] -> [[Int]]
buildDifferenceTable input = input : unfoldr buildRow input
  where
    zipPairs list = zip list $ tail list
    diffPairs = map $ uncurry subtract
    buildRow lst =

      let row = diffPairs $ zipPairs lst
       in guard (not $ null row) >> Just (row, row)

-- read and parse stdin
readAndParseStdin :: IO [[Int]]
readAndParseStdin = do
  content <- getContents
  case parse parseInput "" content of
    Left parseError -> error $ show parseError
    Right doc -> return doc

-- parse each input line
parseInput :: Parser [[Int]]
parseInput = parseSequence `sepBy` char '\n'

-- parse sequence of numbers
parseSequence :: Parser [Int]
parseSequence = map read <$> many1 (digit <|> char '-') `sepBy` char ' '